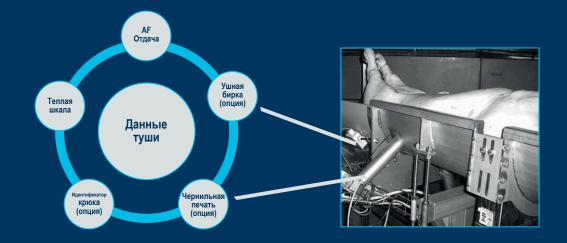
FRONTMATEC

AutoFom™ Указание по применению от


• Хенрик Андерсен, технический директор Frontmatec

Вывод данных из AutoFom III™

Таблица 1: Пример вывода данных от 27 июня 2012 г.

Идентификационный номер	Номер по порядку	Дата	Время	Статус	мток	UMFP	SPKC	FLHC	SCKG	SCSI	кокс	LACH	BAUC	BAFL	TEKG	TESI
15112	39889	20120627	54810	0	0	52,69987	18,24479	52,41047	0,564907	0,274499	-0,33492	-0,14285	-0,99032	47,17452	0,13359	-0,33046
15113	39890	20120627	54822	0	0	60,89887	11,78831	56,90783	1,010459	1,350174	0,362334	0,252319	-1,88054	59,46148	0,309522	0,202319
15114	39891	20120627	54838	0	0	62,99077	12,44654	70,46547	1,693858	2,066512	0,416933	0,685913	-1,8924	60,75374	0,275592	0,068241
15115	39892	20120627	54846	0	0	63,10577	22,66853	69,41668	1,489178	1,945122	0,331036	0,726899	-1,37296	61,79319	0,213862	0,101218
15116	39893	20120627	54857	0	0	61,25621	13,0228	65,94041	1,228422	1,646074	0,248291	0,610842	-1,53805	58,26814	0,2679	0,094706
15117	39894	20120627	54901	0	0	62,74812	12,06294	61,62119	0,995438	1,330138	0,246668	0,518251	-1,15518	59,98716	0,164779	-0,16707
15118	39895	20120627	54909	0	0	67,53667	9,381349	76,88154	1,894448	2,954855	0,8255	1,112164	-2,63158	67,01939	0,528595	0,573163
15119	39896	20120627	54913	0	0	61,51261	12,38978	60,59164	1,00794	1,309039	0,452943	0,427074	-1,76322	59,43436	0,157823	-0,05222

Сокращения расшифрованы на странице 4

генетических разработок и платежей

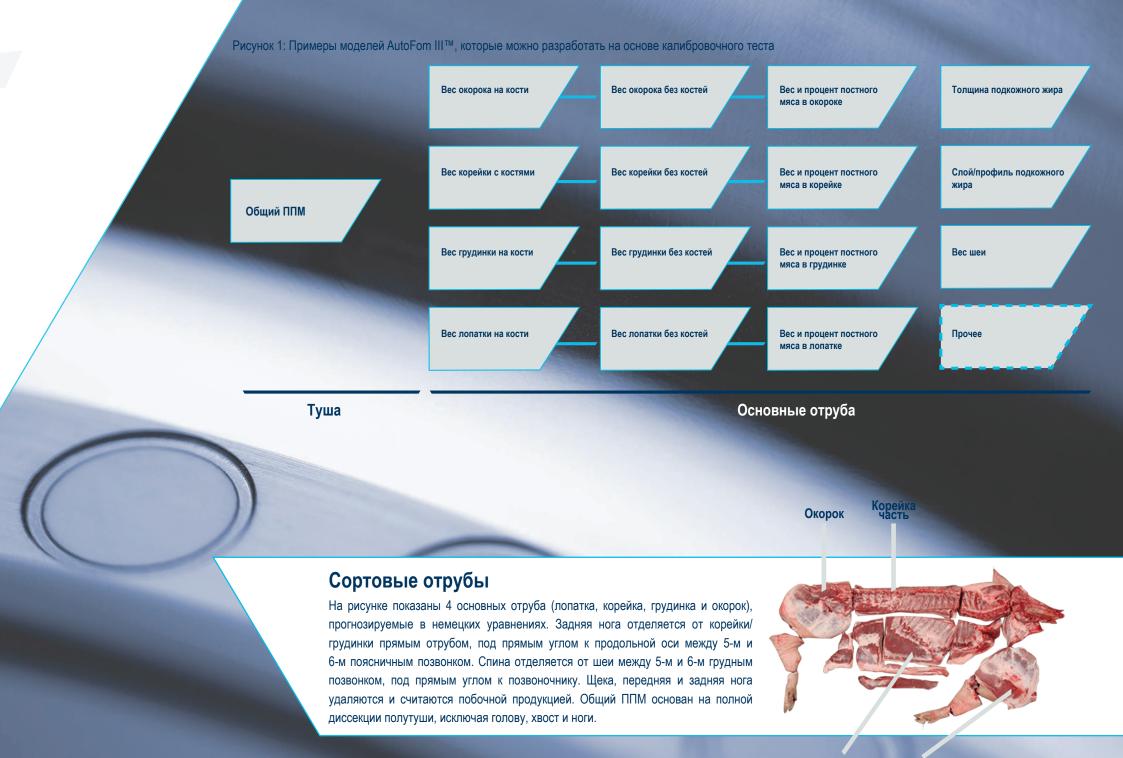
- фермерам
- Что еще возможно? Пример из большой группы моделей, созданных при помощи IRTA в Испании, статистическая точность, отношение к тесту на разделку

Данные Таблицы 1 направляют на главный ПК цеха убоя, где их связывают с весом теплой туши, номером поставщика, данными ветеринарной службы и т.д. В убойных цехах, использующих данные AutoFom™ для генетических улучшений, данные с ушных чипов считываются антенной, встроенной непосредственно в желоб AutoFom™, и

посредством DataMerger, поставляемым Frontmatec, ассоциируются с конкретным поставщиком свиней и

Конечно, не все ушные бирки будут присутствовать после удаления щетины, но количество будет достаточным для надежной проверки генетической

Подробное описание прогнозируемых параметров AutoFom III™


Утверждено в Германии в 2011 г.

Ниже, представлено подробное описание прогнозируемых параметров от AutoFom III™, утвержденных в Германии в 2011 г.

- UMFP = Общий процент постного мяса
- SPKC = Толщина жировой ткани
- FLHC = Толщина мышечной ткани
- SCKG = Вес окорока, на кости
- SCSI = Вес окорока, без кожи и костей
- KOKG = Вес корейки, с костями
- LACH = Вес корейки, без кожи и костей
- BAUC = Вес грудинки, на кости
- BAFL = Процент постного мяса в грудинке
- TEKG = Вес лопатки, на кости
- TESI = Вес лопатки, без кожи и костей

Протокол диссекции основан на полной диссекции свиной полутуши.

На Рисунке 1 показаны возможные прогнозные модели, которые можно разработать на основе стандартного или заводского калибровочного теста. Степень детализации данных и диссекции зависит от потребностей заказчика.

Общий процент постного мяса

UMFP – Общий процент постного мяса:

Общий процент постного мяса (ППМ) основан на полной диссекции полутуши и рассчитывается по формуле:

Общий ППМ = Вес мяса после диссекции (исключая голову, ноги и хвост) х 100

Постное мясо определяется как поперечнополосатая мышечная ткань, без соединительной ткани и сухожилий.

Толщина спинного шпика и толщина корейки

SPKC – Толщина шпика:

Измерение слоя подкожного жира на корейке, в 7 см от линии разреза, между 2-м и 3-м последним ребром, в мм.

FLHC – Толщина мышечной ткани:

Измерение толщины мышечной ткани (карбонада) в 7 см от линии разреза, между 2-м и 3-м последним ребром, в мм.

Сортовые отрубы

SCKG - Вес окорока, на кости:

Задняя нога и задняя голяшка удаляются; нога отделяется от спины/грудины прямым резом, под прямым углом к продольной оси между 5-м и 6-м поясничным позвонком. Общий вес окорока регистрируется.

SCSI = Вес окорока, без кожи и костей:

Окорок освобождают от кожи и костей; вес регистрируется.

КОКG – Вес корейки, с костями:

Корейку отделяют от грудинки продольным резом, по линии позвоночника. Линия краниально начинается в 2 см (вентрально) от 1-го грудного позвонка и каудально заканчивается в 4 см (вентрально) от хряща 5-го поясничного позвонка. Позвоночник удаляется; общий вес корейки регистрируется.

LACH – Вес филейной части, без кожи и костей:

Корейку освобождают от кожи и костей; вес регистрируется. Карбонад триммингу не подвергается.

BAUC – Вес грудинки, на кости:

Брюшная часть отделяется от остальной части грудинки – разрезом, начинающимся в 4 см (каудально) от последнего ребра, сначала по прямой линии к брюшине, а затем краниально (по линии, идущей дорсально от ряда сосков). При наличии рудиментарного ребра, его считают последним, чтобы в «брюшной части грудинки» не осталось костей. Брюшную часть удаляют; общий вес грудинки регистрируется.

BAFL – Процент постного мяса в грудинке:

Грудинку с костями подвергают полной диссекции и разбирают на подкожный жир, межмышечный жир, кости и мясо, убедившись, что все мясо, оставшееся на костях, отсортировано к мясу, а весь жир полностью отделен от мяса и отсортирован к жиру. Затем, вес постного мяса регистрируется.

После полной диссекции, процент постного мяса в грудинке рассчитывают по формуле:

Вес мяса от грудинки на кости после диссекции х 100
ППМ грудинки = Вес грудинки на кости

TEKG – Вес лопатки, на кости:

Переднюю ногу и переднюю голяшку отделяют от лопатки, а лопатку отделяют от спины/грудинки, между 4-м и 5-м грудным позвонком, под прямым углом к позвоночнику. Общий вес лопатки регистрируется.

TESI – Вес лопатки, без кожи и костей:

Лопатку освобождают от кожи и костей; вес регистрируется.

Пример построения формулы для отрубов (SCSI)

Ниже приведен обзор немецкой формулы для окорока, без кожи и костей. Формула использует 9 визуальных переменных из AutoFom III™. Для определения SCSI, см. стр. 6.

- R2P3 Измерение удельной толщины жира
- R2P7 Измерение удельной толщины жира
- R2P9 Толщина кожи в точке минимальной толщины жира, мм
- R3P5 Максимальная толщина корейки
- R3P6 Средняя толщина мяса в двух точках p2
- R4P2 1 измерение толщины слоя жира
- R4P4 1 измерение средней толщины слоя жира, в точке минимальной толщины жира
- R4P9 1 измерение удельной толщины жира в окороке
- R4P11 1 измерение удельной толщины жира в окороке

9 визуальных переменных заложены в алгоритм оценки: Формула SCSI – пример ID 15112 из Таблицы 1

((Вес теплой туши х коэффициент регрессии веса1) + алгоритм2) * 23

=> (100,2 кг x 0,0813849538)+0,274499)*2 = 16,8585 кг

В этом случае, общий вес 2-х окороков без костей (в туше) равен 16,8585 кг. Точность равна примерно ± 1.5 - 2.0%.

- 1: Коэффициент регрессии для ВТТ
- 2: Алгоритм оценки SCSI для ID 15112 из Таблицы 1
- 3: Для расчета общего веса окороков (левого и правого) в туше, умножьте разделку полутуши на 2

ОКОРОК						
Bec (SCSI)	Индекс на кг					
<14,5	2,1					
14,5-14,99	2,2					
15,0-19,5	2,3					
19,51-20	2,2					
20,01-20,5	2,1					
>20,5	1,8					

КОРЕЙКА					
Bec (LACH)	Индекс на кг				
<6,2	2,8				
6,2-7,8	3,5				
>7,8	3,25				

ЛОПАТКА					
Bec (TESI) Индекс на кг					
ALL	1,7				

ГРУДИНКА					
Bec (BAFL)	Индекс на кг				
<45%	0,5				
45,0-50,99	0,8				
>51%	1				

Очевидно, процент постного мяса можно использовать для оплаты с помощью AutoFom III™. Так как погрешность AutoFom III™ значительно меньше, чем у всех прочих методов, а ошибки оператора и влияния обработки нет, индивидуальная точность и, следовательно, вариативность выработки за день будет намного меньше, но, конечно, должна иметь ту же среднюю величину.

Однако многие наши клиенты в Германии ввели матрицу платежей. Первыми были Westfleisch SCE, впервые применив сортовые веса для платежей в 2000 г. Цель матрицы платежей состоит в применении возможностей AutoFom для получения сортовых данных, чтобы улучшить генетические характеристики, время забоя и т.д., путем оплаты на основе коммерческой стоимости, а не традиционного общего процента постного мяса.

Учтите, что ни процент постного мяса, ни масса теплой туши не учитываются системой платежей.

Таблица учитывает неделю, где цена индексной позиции равна 1,44 евро – это будет указываться часто, если не ежедневно.

С помощью примеров из Таблицы 1, включая вес теплой туши, мы получим структуру ценообразования для туши в Таблице 2.

Таблица 2: Структура ценообразования для туши

№ забоя/ Идентификатор	UMFP	ВТТ	SCSI Bec	SCSI индекс Р	LACH Bec	LACH индекс Р	BAUC Bec	BAFL	BAUC индекс Р	TESI Bec	TESI индекс Р	Общий индекс Р	Цена@ EUR 1,44
15112	52,7	100,2	16,9	38,7746	6,4574	22,6010	15,2815	47,1745	12,2252	8,8775	15,0918	88,6927	127,72
15113	60,9	88,4	17,1	39,3052	6,4537	22,5879	11,4883	59,4615	11,4883	8,8309	15,0125	88,3939	127,29
15114	63,0	87,2	18,3	42,1511	7,2401	25,3404	11,2599	60,7537	11,2599	8,4496	14,3644	93,1157	134,09
15115	63,1	87,0	18,1	41,5178	7,3086	25,5802	12,2646	61,7932	12,2646	8,4967	14,4445	93,8071	135,08
15116	61,3	91,0	18,1	41,6397	7,3457	25,7099	12,6168	58,2681	12,6168	8,8607	15,0633	95,0296	136,84
15117	62,7	77,2	15,2	35,0201	6,2318	21,8114	11,0286	59,9872	11,0286	7,0365	11,9620	79,8220	114,94
15118	67,5	76,5	18,4	42,2317	7,3725	25,8039	7,9564	67,0194	7,9564	8,4510	14,3667	90,3586	130,12
15119	61,5	87,0	16,8	38,5918	6,7090	23,4814	11,4841	59,4344	11,4841	8,1899	13,9228	87,4801	125,97
15120	63,5	72,2	16,6	38,1407	6,6512	23,2793	8,6862	61,0055	8,6862	6,9469	11,8098	81,9161	117,96
15121	67,5	77,0	18,3	42,0511	7,3322	25,6625	6,6646	67,3823	6,6646	8,4067	14,2914	88,6696	127,68
15122	58,7	93,5	17,8	40,9385	7,1955	25,1842	13,8405	56,3413	13,8405	8,7594	14,8910	94,8543	136,59

При изучении, вы заметите, в некоторых случаях, двойную разницу в оплате, что можно объяснить весом теплой туши (ВТТ) и процентом постного мяса.

Сравнив 15116 и 15119, вы увидите, что одинаковый ППМ и разница в 4 кг дают разрыв цены в 11 евро.

Применение данных AutoFom III™ для улучшения генетического потенциала

Результаты AutoFom по потомству Piétrain

	Сегодня	5 лет назад
Количество туш	31,075	4,207
BTT, кг	94,45	93,75
Прирост нетто, г	465	453
Лопатка, кг	8,19	8,08
Корейка, кг	6,99	6,84
Грудинка, кг	14,76	14,84
Окорок, кг	18,1	17,7
ППМ грудинки, %	52,3	50,6

Источник: GFS/SNW

Возможно внесение изменений в технические данные

Применение данных сортировки для генетической обратной связи

Напротив, вы видите пример немецкой компании GFS онлайн каталог хряков со средними показателями помета в сравнении с общим средним значением. Данные получены из тестового образца, с помощью чипа ушной бирки молодняка для AutoFom III™. С учетом матрицы платежей в Таблице 2, можно легко рассчитать прибыль.

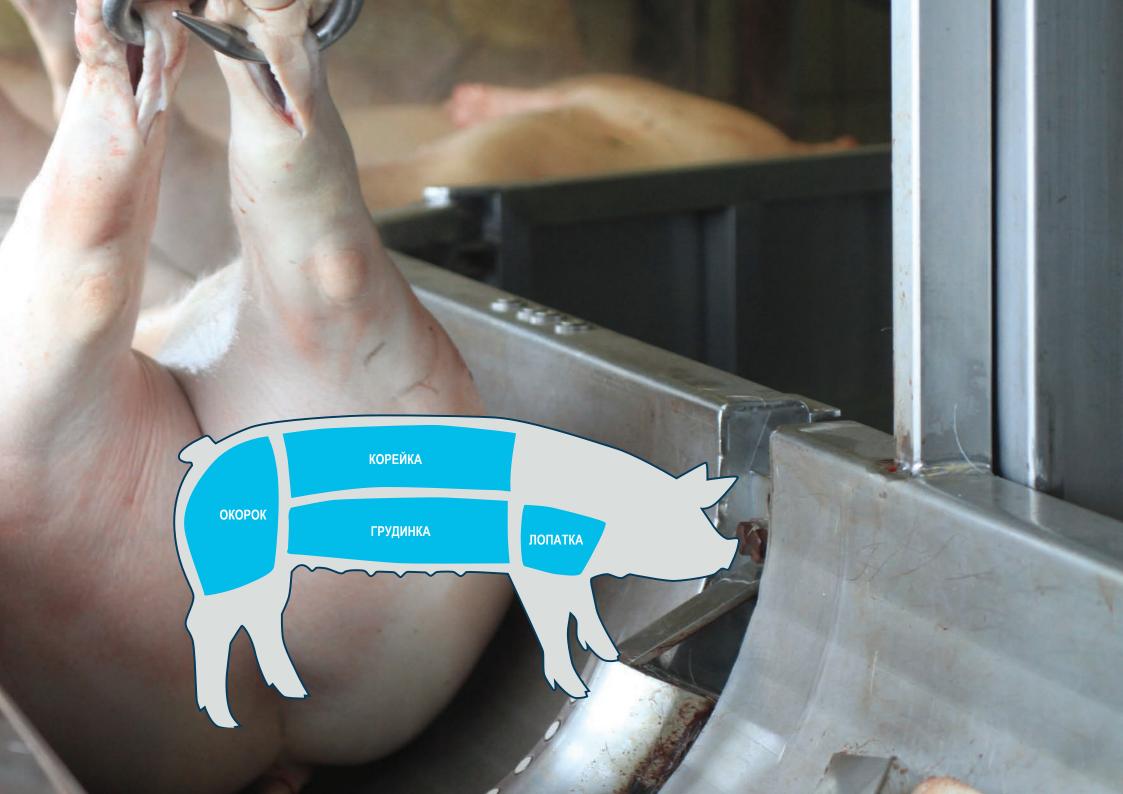
Случай с Piétrain в Германии остается наглядным примером того, как можно изменить общее качество туш (в данном случае, отдельные грудинки представляли проблему), если начать собирать данные отрубов и встраивать их в систему обратной связи и платежей.

Также, PIC использует данные о весе и стоимости отдельных отрубов от тысяч полностью племенных свиней, чтобы обеспечить генетическую обратную связь для своих программ разведения. Тем самым PIC оптимизирует первичное количество их потомства.

Точность и корреляция (пример)

Ниже указан ряд моделей и их статистическая точность – разработка Испанского института мяса (IRTA), на основе масштабной диссекции, выполненной в 2012 г.

Модель (окорок)	R²CV	RMSEC	RMSECV
Толщина наружного слоя жира в окороке (2), мм	0,640	2,2	2,3
Толщина наружного слоя жира в окороке (3), мм	0,614	4,3	4,4
Общий вес окорока с костями, г	0,867	370	392
Общий вес окорока без костей, г	0,863	359	376
Постное мясо в окороке, %	0,845	1,40	1,46
Вес постного мяса в окороке, г	0,842	338	348


Модель (корейка)	R²CV	RMSEC	RMSECV
Общий вес корейки на кости	0,860	333	345
Общий вес корейки без костей, г	0,865	306	318
Постное мясо корейки, %	0,898	1,76	1,82
Вес постного мяса корейки, г	0,813	219	227

Модель (лопатка)	R²CV	RMSEC	RMSECV
Общий вес лопатки с костями, г	0,884	227	234
Общий вес лопатки без костей, г	0,880	214	221
Постное мясо в лопатке, %	0,770	1,60	1,66
Вес постного мяса в лопатке, г	0,836	193	199

Модель (грудинка)	R²CV	RMSEC	RMSECV
Общий вес грудинки с костями, г	0,685	296	308
Общий вес грудинки без костей, г	0,696	282	294
Постное мясо грудинки, %	0,774	2,75	2,84
Вес постного мяса грудинки, г	0,559	198	198

Некоторые из наших ценных пользователей AutoFom™

FRONTMATEC

Компания Frontmatec разрабатывает и производит специализированные решения для автоматизации процессов в пищевой промышленности и других отраслях, предъявляющих высокие требования к гигиене производства. Нас ценят за высокое качество систем на всех участках производственной цепи от сортировки туш, линий убоя, линий разделки и обвалки, систем обеспечения гигиены и систем контроля до логистики и упаковки.

Барселона, Испания

Телефон: +34 932 643 800 E-mail: barcelona@frontmatec. com

Беккум, Германия

Телефон: +49 252 185 070 E-mail: beckum@frontmatec.com

Бирмингем, Великобритания Телефон: +44 121 313 3564

E-mail: birmingham@frontmatec.com

Гродзиск-Мазовецкий, Польша Телефон: +48 227 345 551 E-mail: grodzisk@frontmatec.com

Цзинин, КНР

Телефон: +86 537 371 3266 E-mail: jining@frontmatec.com

Канзас, штат Миссури, США Телефон: +1 816 891 2440 E-mail: kansascity@frontmatec.com Коллинг, Дания

Телефон: +45 763 427 00 E-mail: kolding@frontmatec.com

Люнен, Германия

Телефон: +49 2306 7560 680 E-mail: luenen@frontmatec.com

Москва, Россия

Телефон: +7 495 424 9559 E-mail: moscow@frontmatec.com

Рейссен, Нидерланды

Телефон: +31 886 294 000 E-mail: rijssen@frontmatec.com

Шанхай, Китай

Телефон: +86 215 859 4850 E-mail: shanghai@frontmatec.com

Скиве, Дания

Телефон: +45 975 250 22 E-mail: skive@frontmatec.com

Сморум, Дания

Телефон: +45 445 037 00 E-mail: smoerum@frontmatec.com

Сент-Ансельм, Квебек, Канада

Телефон: +1 418 885 4493 E-mail: quebec@frontmatec.com

Тандслет, Сидальс, Дания Телефон: +45 744 076 44

Телефон: +45 /44 0/6 44 E-mail: tandslet@frontmatec.com

frontmatec con